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Flow regimes in a plane Couette flow with
system rotation

T. TSUKAHARA†, N. T ILLMARK AND P. H. ALFREDSSON
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Flow states in plane Couette flow in a spanwise rotating frame of reference have been
mapped experimentally in the parameter space spanned by the Reynolds number and
rotation rate. Depending on the direction of rotation, the flow is either stabilized
or destabilized. The experiments were made through flow visualization in a Couette
flow apparatus mounted on a rotating table, where reflected flakes are mixed with
the water to visualize the flow. Both short- and long-time exposures have been
used: the short-time exposure gives an instantaneous picture of the turbulent flow
field, whereas the long-time exposure averages the small, rapidly varying scales and
gives a clearer representation of the large scales. A correlation technique involving
the light intensity of the photographs made it possible to obtain, in an objective
manner, both the spanwise and streamwise wavelengths of the flow structures. During
these experiments 17 different flow regimes have been identified, both laminar and
turbulent with and without roll cells, as well as states that can be described as
transitional, i.e. states that contain both laminar and turbulent regions at the same
time. Many of these flow states seem to be similar to those observed in Taylor–Couette
flow.

1. Introduction
Stability and transition to turbulence in various flow systems have been studied since
the pioneering works of Rayleigh (1880) and Reynolds (1883). One category of such
flow systems can be classified as shear layers where inviscid and viscous instability
mechanisms may give rise to instabilities. Inflection type instability, exponential
growth of Orr–Sommerfeld modes and transient, algebraic growth are examples of
such mechanisms and are extensively described in the monograph by Schmid &
Henningson (2001). Such instabilities are important in many applications of fluid
mechanics, e.g. on airfoils and in jet flows. Another type of instability may occur in
flow fields which are affected by body forces. Examples of such forces are buoyancy
due to density differences, centrifugal forces due to streamline curvature and Coriolis
forces due to system rotation.

The ‘canonical’ case of buoyancy-induced instability is the so-called Bénard
convection where a fluid between two infinitely large horizontal plates is heated
from below. This sets up counter-rotating convection rolls and for high temperature
differences various secondary instabilities may occur. The most studied flow case
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where centrifugal instability dominates is the so-called Taylor–Couette flow (hereafter
TCF), where the fluid is contained between two concentric, independently rotating
cylinders. The basic instability in this flow gives rise to axisymmetric vortices (often
called Taylor vortices) with a cross-stream size approximately equal to the gap width.
These two flows are well described in many books as for instance Chandrasekhar
(1961) and Drazin & Reid (1981).

The influence of rotation on stability due to the Coriolis force is less studied.
If there is a component of the rotation vector that is parallel to the wall and
normal to the mean flow direction the Coriolis effects may lead to an unstable
‘stratification’. As in cases where stratification is set up by density differences the
flow may develop streamwise-oriented vortices. The Coriolis force may, however,
be stabilizing or destabilizing depending on the direction of rotation. If the mean
flow vorticity is of the opposite sign as compared to the system rotation vector,
then the flow becomes unstable, whereas the flow becomes stabilized if they have
the same sign. Lezius & Johnston (1976) did both linear stability calculations for
a spanwise rotating laminar channel flow and investigated experimentally how a
turbulent channel flow was affected. Alfredsson & Persson (1989) experimentally
showed the existence of spanwise roll cells set up in a laminar channel flow and also
showed secondary instabilities and transition to turbulence. It is interesting to note that
instability may occur at Reynolds numbers almost two orders of magnitude smaller
than predicted for the Tollmien–Schlichting waves to be unstable in the non-rotating
case.

In a plane Poiseuille flow, the Coriolis force acts in such a way that in the half of
the channel where the system rotation has opposite sign compared to the mean flow
vorticity the flow becomes destabilized (anticyclonic rotation) whereas in the other
half of the channel it becomes stabilized (cyclonic rotation). For plane Couette flow
(PCF), on the other hand, because the basic flow vorticity is of the same sign across
the channel, the Coriolis force will be either stabilizing or destabilizing across the full
channel width.

The plane Couette flow is, maybe conceptually, the most simple shear flow;
however, to build a working apparatus for flow experiments is a complex challenge.
A functioning Couette flow apparatus (the principle of the apparatus is described
in § 3) was constructed and built in 1990 at KTH and was used to study turbulent
spots and the transition to turbulence first reported by Tillmark & Alfredsson (1990).
Later, turbulent plane Couette flow was also studied and compared with results from
direct numerical simulations by Bech et al. (1995). The basic design principle of this
apparatus has later been used by several other groups, and to our knowledge at least
five other apparatuses have been built based on the KTH design.

In a second phase of experiments at KTH, the PCF apparatus has been mounted
on a rotating table in order to investigate the effects of system rotation. We will
denote this flow rotating plane Couette flow (RPCF). Some preliminary results were
given by Alfredsson & Tillmark (2005) and later Hiwatashi et al. (2007) studied
RPCF at low Reynolds numbers to investigate some stable, three-dimensional, finite
amplitude solutions which were obtained theoretically/numerically by Nagata (1998)
and Nagata & Kawahara (2004). In this work, we extend the previous experimental
studies and make an extensive mapping of various flow instabilities that occur in an
RPCF.

As far as we know, there exist no other experimental studies on RPCF than those
carried out at KTH. However, there exist a few direct numerical simulation studies
of the rotating turbulent plane Couette flow. The paper by Komminaho, Lundblad &
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Johansson (1996) was mainly devoted to the non-rotating case; however, they also
showed that a turbulent flow can be stabilized and even relaminarize by rather weak
negative rotation. Turbulent, i.e. high Reynolds number, RPCF was simulated by
Bech & Andersson (1996, 1997), with destabilizing rotation, and they found that
secondary flow in the form of streamwise-oriented vortices also occurs in this case
both for weak and strong rotation.

1.1. Related work

Taylor–Couette flow is one of the most studied systems with regard to hydrodynamic
stability, transition and turbulence. Although the seminal paper by Taylor (1923)
was published more than 80 years ago, the richness of this flow system continues
to keep researchers occupied and new phenomena are still discovered. We do not
attempt to make a comprehensive review of TCF here, because there are several
monographs and workshop proceedings dealing exclusively with this flow system (see
e.g. Koschmieder 1993); however, we have found that many of the flow features that
have been observed in TCF can also be found in the RPCF. The similarities between
the two systems may partly be due to the fact that for a given experiment there are
two independent control parameters in both systems: in the TCF the angular speeds
of the two cylinders and in the RPCF the wall velocity and the rotational speed. In
the following, we put emphasis on some research papers on TCF that are relevant
for our study.

Taylor (1923) made a thorough analysis of the linear stability properties
for axisymmetric disturbances of the TCF and also confirmed the results with
experiments. Later, Coles (1965) made extensive and careful experiments in a relatively
small gap width TCF (radius ratio ro/ri ≈ 1.12) on both co- and counter-rotating
cylinders and found for high rotation rates a large number of flow scenarios. He also
showed that depending on how a specific point in parameter space was reached, that
point could have several different flow states (i.e. different spanwise and streamwise
wavenumbers of the Taylor vortices). The TCF was further studied by Andereck,
Liu & Swinney (1986) in a similar geometry as that of Coles and they identified 18
principal flow regimes by careful flow visualization experiments. They also produced a
map of the Rei–Reo plane, i.e. the parameter plane spanned by the Reynolds numbers
based on the inner and outer cylinder diameters and velocities, respectively. Note that
if we, by definition, let Rei � 0 then Reo can have both positive and negative values
depending on if it is co-rotating (Reo > 0) or counter-rotating (Reo < 0).

1.2. Motivation of present work

There has been some recent interest in investigations of TCF when the radius ratio
ro/ri → 1. In that case, Faisst & Eckhardt (2000) showed that the TCF approaches
the PCF and one could expect that the instability that leads to Taylor vortices may
be overtaken by the instability that gives turbulence in the PCF. In the small gap
case with co-rotating cylinders with slightly different speed, one obtains the PCF with
system rotation. This is however a complicated or even impossible situation to obtain
experimentally because the radius ratio needs to be around or less than 1.01 and the
speeds fairly high to get into the interesting parameter regime. Carey, Schlender &
Andereck (2007) recently made experiments in an apparatus with ro/ri = 1.01, but
in their case only the inner cylinder was rotating. However, they found small-scale
structures overlaid on the Taylor vortices which they named ‘bursts’. These structures
have not previously been observed for larger radius ratios.

Recently, several researchers (see e.g. Prigent et al. 2002; Prigent & Dauchot 2005)
have observed a regular pattern of turbulent stripes interweaved with laminar regions
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that are inclined to the flow direction, in both PCF and TCF. This kind of transition
scenario has been observed in different flow systems and described by a process called
‘spatiotemporal intermittency’. Especially, a state well known as ‘spiral turbulence’
was discovered in a counter-rotating TCF by Coles (1965) and was further studied
experimentally (Andereck et al. 1986; Hegseth et al. 1989). Similar patterns have
been numerically reproduced in PCF by Barkley & Tuckerman (2005, 2007) and also
in a plane Poiseuille flow by Tsukahara et al. (2005). However, its self-organizing
mechanism is still a question attracting much attention from researchers.

In this work, we are studying the RPCF in a plane channel with system rotation.
We have previously made some preliminary studies that have shown that this flow
system contains a number of different flow states, many of them seem similar to those
observed in the TCF. However, the RPCF have some advantages over the TCF: one is
that geometry is simple and one can directly distinguish how the Coriolis force enters
the flow equations. We propose that RPCF is probably a better model system to
work with in order to investigate nonlinear flow instabilities and bifurcations than the
TCF system, from both theoretical and numerical perspectives. From an experimental
point of view, it is of course a more complex apparatus than usually needed for TCF
experiments; however, to obtain true RPCF at high Re it is the only possibility.

The layout of the paper is as follows. Section 2 gives a brief introduction to the
equations of motion and the relevant parameters and also compares with other similar
systems, especially the TCF system. The experiments are described in § 3, with respect
to both the set-up and the experimental procedure. In the experiments, a number of
different flow states have been observed, and in § 4 we classify the different states
and map them in the Re–Ω plane, where Ω is a non-dimensional rotation number
as defined in the following section. Section 5 describes, mainly through photographic
evidence, these states and gives some quantitative results about scales obtained from
evaluating the patterns in the photographs. Finally, § 6 gives the conclusions of the
present work and also gives some indications for future work.

2. Theoretical background
2.1. Governing equations

The momentum and continuity equations for a flow in a rotating frame of reference
with an angular velocity Ω = Ω(t) are

∂u
∂t

+ u · ∇u = − 1

ρ
∇P + ν∇2u + 2u × Ω + Ω̇ × r, (2.1)

∇ · u = 0, (2.2)

where ρ is the fluid density and ν is the kinematic viscosity, which both here are
assumed to be constant. The static pressure P ∗ and the centrifugal acceleration are
combined to give

P = P ∗ − ρ

2
|Ω × r |2

and r is a position vector from the axis of rotation. In the following, we assume
that the walls are counter-moving with a velocity difference of 2Uw and that the
distance between the walls is 2h. For undisturbed laminar flow, the velocity profile
also becomes linear in the case with system rotation so that

U (y) = Uw

y

h
, (2.3)
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where we chose the coordinate system such that x is in the streamwise direction, y is
normal to the walls and z is in the spanwise direction. The rotation vector is in the
spanwise direction, i.e. Ω = Ωzez.

This flow can be fully characterized through two non-dimensional parameters: the
Reynolds number Re = Uwh/ν and a rotation number Ω = 2Ωzh

2/ν. In some earlier
studies, a rotation number defined as Ro =2Ωzh/Uw = Ω/Re has been used; however,
for this work we chose Ω to characterize the effect of rotation. In this way, Re and
Ω can be changed independently in the experiment by changing the wall velocity and
the system rotation speed, respectively.

The flow develops along various time scales and at least three relevant scales can
be identified:

τd = h2 ν−1 − diffusion time scale, (2.4)

τo = h U−1
w − outer time scale, (2.5)

τΩ = 2π Ω−1
z − rotation time scale. (2.6)

These time scales are related as

τd = Re τo =
1

4π
Re Ro τΩ. (2.7)

2.2. Linear stability of plane rotating Couette flow

It is well known that linear stability theory predicts a stability boundary for
streamwise-oriented roll cells for RPCF as

Re = Ω +
107

Ω
, (2.8)

which gives a minimum Reynolds number for instability of 20.7 at Ω = 10.3 (see
e.g. Lezius & Johnston 1976; Hiwatashi et al. 2007). It is also well known that
linear theory utterly fails when predicting instability in PCF, since according to linear
theory there is no instability even for infinite Reynolds numbers, whereas experiments
have already shown that turbulent spots can become self-sustained even at Reynolds
numbers as low as Re = 360 (Tillmark & Alfredsson 1990; Daviaud, Hegseth & Bergé
1992; Prigent et al. 2002).

2.3. Rotation effects on turbulence

System rotation also affects turbulent flows through the influence of the Coriolis term.
The equations for the Reynolds stresses are obtained by taking the ith component of
(2.1) and multiplying by uj and thereafter taking the ensemble average to get(

∂

∂t
+ Uk

∂

∂xk

)
Rij = Pij + Πij − εij + Dij + Gij , (2.9)

where u · ek = Uk +uk , and Uk and uk are the ensemble average and fluctuating part of
the kth component, respectively. Here, Rij = uiuj , where the overbar denotes ensemble
average. The first four terms on the right-hand side represent turbulent production
(Pij ), pressure strain redistribution (Πij ), viscous dissipation (εij ), turbulent and viscous
diffusion (Dij ) and are the same as for the non-rotating case. The last term Gij is a
term stemming from the system rotation, which can be written as

Gij = −2Ωk(Rjmεikm + Rimεjkm), (2.10)

where εijk is the permutation tensor. As is well known, the Coriolis term does not
perform work, so the physical interpretation of this term is a redistribution of energy
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between the velocity components. It is noteworthy that the term Ω̇ × r in (2.1) does
not contribute to (2.9).

For unidirectional flows (as e.g. channel flows) there is no variation of mean
quantities in the x1 = x and x3 = z directions and the mean velocity components
U2 = U3 = 0. This simplifies (2.9) significantly (see e.g. Johnston, Halleen & Lezius
1972) and we can write

∂

∂t
(u2) = −2uv

(
dU

dy
− 2Ω

)
+ Π11 − ε11 + D11, (2.11)

∂

∂t
(v2) = −4uvΩ + Π22 − ε22 + D22, (2.12)

∂

∂t
(w2) = Π33 − ε33 + D33, (2.13)

∂

∂t
(−uv) = v2

dU

dy
+ 2(u2 − v2)Ω + Π12 − ε12 + D12. (2.14)

For a steady flow, i.e. U and Ω are both independent of t , (2.11)–(2.14) can be
further simplified because then the left-hand side is equal to zero.

In the case when Ω and ∂U/∂y have the same sign, turbulent energy will be
transferred from the streamwise to the wall normal component. It is not obvious
what the overall result will be on the turbulence, except that it will lead towards an
equalization of the two components. On the other hand, negative rotation will give
a transfer of energy to u2 and a decrease in v2. The normal velocity is important
for turbulence production because it directly influences uv (see (2.14)) and it can be
intuitively understood that negative rotation will lead to a decrease in uv and hence
in a decrease in the production of turbulent energy.

2.4. Relation to other flows

The linear stability of the rotating Couette flow has its analogue in two other well-
known flows, namely Bénard convection and Taylor–Couette flow in the small gap
limit. In fact, the governing equations and boundary conditions for obtaining the
stability boundary are the same except that the stability parameters are different
in the three cases. In the case of Bénard convection, there is only one parameter,
namely the Rayleigh number which for a given set-up can be varied by changing
the temperature gradient between the plates. For TCF with only the inner cylinder
rotating, the equation can be written with only one parameter, namely the Taylor
number; however, in an experiment, two independent parameters can influence the
flow, i.e. the individual angular speed of the two cylinders. Also, in the present case,
we have two independent parameters: Re and Ω . It may therefore not be surprising
that the RPCF and the TCF have many similarities when comparing various flow
structures above the critical parameter values that denote instability. In both cases
the origin of the instability is a body force, in the TCF it is of centrifugal origin and
therefore proportional u2 and in the RPCF it is caused by the Coriolis force and
hence in linear proportion to u.

3. Experimental description
3.1. Experimental flow apparatus

The experiments have been carried out in a water channel mounted on a rotating
table previously described by Alfredsson & Tillmark (2005) and Hiwatashi et al.



Plane Couette flow with system rotation 11

Motor
Couette channel

Turntable

Glass plate

Camera

Light

1500 mm3
6
0
 m

m

z

Ω

x

y

Figure 1. Schematic of the rotating plane Couette flow apparatus.

(2007). A schematic of the set-up is depicted in figure 1. The Couette apparatus
with counter-moving walls is basically the same as in the experiment by Tillmark &
Alfredsson (1990, 1992). Such a system of two counter-moving walls gives a zero net
transport of fluid through the channel and, hence, non-intrusive measurement, e.g.
visualization, is desired to prevent disturbance generation.

The Couette channel itself consists of two open tanks connected by a long open
plane channel formed with two vertical parallel glass plates. The gap between the
two sides of the channel can be changed by adjusting one of these glass plates,
which is positioned inside the tank. In the present experiments, the rectangular cross-
section of the channel is 10 × 400 mm2, and the test section length is about 1.5 m.
To form the plane Couette flow, two vertical cylinders in each tank drive an endless
transparent polyester plastic belt of 360 mm width and 0.1 mm thickness. The belt,
which is made of a 5 m long film with the edges glued together in a thin joint, runs
along the facing inner glass surfaces of the channel. A thin lubricating water film
is established and reduces friction between the band film and the glass walls. The
actual distance between the plastic film surfaces, which determines the channel height
(2h), has been measured with a microscope. The measurements need to be carried
out when the belt is moving. First, the microscope, which has a very small depth of
view, is focused on the inner surface, and then it is moved and focused on the outer
surface. The displacement of the microscope is measured with a micrometre, and by
taking the refractive index of water into account, the distance between the bands can
be determined. The repeatability of the measurements has been found to be within
±0.2 mm for a trained experimentalist.

The variation in the long-time stability of the belt speed was less than 2 %. In
the remainder of this paper, x is in the streamwise direction, y is in the wall-normal
direction and z is in the spanwise direction as shown in figure 1.

A turntable, on which the heavy apparatus as mentioned above is placed, is driven by
a DC motor and rotates around the vertical z axis. The maximum angular velocity for
the system is Ωz = 0.58 rad s−1 and this corresponds to a non-dimensional maximum
rotation rate of Ω = ±30. The angular velocity has been found to be constant within
±1 %.



12 T. Tsukahara, N. Tillmark and P. H. Alfredsson

3.2. Flow visualization and image processing

This study is based on observations made through flow visualization. Visualization of
the flow states has been accomplished by seeding the water used as the working fluid,
with light-reflecting flakes and illuminating its whole width at an oblique angle from
below (with a fluorescent light tube). Titanium-dioxide-coated mica platelets (Merck,
Iriodin 120, 5–25 μm in diameter) have been chosen for the flow visualization.

Interpretation of photographs of flow visualized with these flakes is based on the
fact that a disk-shaped particle aligns itself along the direction of principal axes of
the local rate-of-strain tensor: for a detailed discussion, see Savaş (1985) and Barth &
Burns (2007). Thus, the reflected light from the particles clearly revealed areas of
turbulent and perturbed laminar flow, while the reflective light in a simple laminar
flow is steady and homogeneous. This method of flow visualization has previously
been used to visualize vortex structures and turbulent spots (e.g. Andereck et al. 1986;
Tillmark & Alfredsson 1992; Prigent et al. 2002).

Photographs of the visualized flow pattern have been taken by a digital camera
(Nikon D50) mounted on the rotating table and subsequently digitized and analysed
by image processing. The camera has a maximum resolution of 3008 × 2000 pixels;
however, all photographs have been taken with a smaller resolution of 1504 × 1000
pixels. Most photographs have been taken with a short exposure time giving a
snapshot of the instantaneous flow field. However, in some cases a longer exposure
time has been used which averages out small-scale structures and therefore clearly
shows persistent large scale structures in the flow.

Several methods of illuminating the flow have been tried, and the best contrast
was found by having the light source placed on the lower side of the channel. This
gives rise to an inhomogeneous light intensity in the spanwise direction (vertical
axis in the photographs), but we have applied digital image processing in order to
separate such inhomogeneous background light intensity from the photographs. In
the flow-visualization figures in this paper, the background, which can be obtained
by averaging a number of realizations (at least 30 photographs which are separated
in time so that even if there is a steady pattern it has moved sufficiently not to give
a structure in the averaged picture), has been subtracted from each photograph.

The photographs in this paper all show a region with 1504×565 pixels. The centre-
to-centre pixel spacing corresponding to the effective size in the fluid is about 0.5 mm,
i.e. h/10. After digitalization and the above-mentioned background subtraction, the
light intensity of each pixel, I (x) = I (x, z), is normalized with the maximum and
minimum values in the relevant photograph:

I ′(x) =
I (x) − Imin

Imax − Imin

. (3.1)

Thus, I ′(x) ranges from 0 to 1.
To perform the statistical analysis of the scales of structures in the RPCF, we have

computed the correlation function for the processed photographs. A correlation of
the light intensity between spatially separated points of x and x + Δx is defined as

R(Δx) =
I ′′(x)I ′′(x + Δx)√

(I ′′(x))2
√

(I ′′(x + Δx))2
, (3.2)

where I ′′(x) is the deviation from the averaged value as given by

I ′′(x) = I ′(x) − I ′(x). (3.3)
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3.3. Experimental procedures

The experiments on a circular Couette flow by Coles (1965) demonstrated significant
hysteresis, in which several flow states (defined by the number of cells along the
axis of rotation and the number of azimuthal waves) could be obtained at the same
point in parameter space. This non-uniqueness is caused by the nonlinearity of the
system and the state obtained for a certain parameter combination may depend on
the path followed in parameter space. Therefore, a well-prescribed path in parameter
space has been specified in this study, where two different procedures were followed.
In one denoted Case-Re, the Reynolds number is fixed while the rotation number
is increased; whereas in Case-Ω the rotation number is fixed while the Reynolds
number is decreased.

The protocol of Case-Re is that, first the film belt of the Couette apparatus is slowly
accelerated from rest to its final Reynolds number with the turntable at rest, and then
the turntable is slowly accelerated from rest to an aimed rotation rate (Re = const.,
Ω = 0 → ± 30). During the start up, the rotation rate usually reached steady state
before changes in the laminar or turbulent flow were observed.

In Case-Ω , an initial flow state is established to be fully turbulent at approximately
Re =1000 before accelerating the rotation to a constant rotation rate. Then the belt
speed is slowly decreased to an aimed Reynolds number with the constant rotation
number (Re = 1000 → 0, Ω = const.).

It is necessary to wait a long time before observation of a state of equilibrium. In
our experiments, τΩ (see § 2.1) is often one of the longest time scale: for instance,
τΩ ≈ 280 s for Ω =1. All pictures presented in this paper have been taken after at least
5 min after setting the control parameters. As in cases where underlying structures are
seen to be unstable or intermittent, we watched further and ensured that it showed
the intrinsic feature for the relevant condition.

4. Classification of flow states and structures
The principal result of this study is the complex transition diagram shown in

figure 2. The abscissa of the diagram gives the rotation speed, negative values are
cyclonic (i.e. stabilizing) whereas positive values are anti-cyclonic (i.e. destabilizing),
and the ordinate is the Reynolds number. As can be seen, there are a number of
demarcation lines in the diagram that distinguishes various flow structures identified
in the experiments. More than 400 different observations have been made to obtain
this diagram following the two different protocols described in § 3.3.

The structure of the flow can be classified in different ways; we chose to describe the
flow by two different categories. The first category describes the flow field in general,
i.e. laminar or turbulent—with ‘turbulent’, we mean any type of flow state that shows
structures with a range of length scales, which appear disordered or chaotic. Such
flows can range from being transitional to fully turbulent—unsteady or steady, and
we find it relevant to define seven different flow states which are given in table 1.
The second category defines the dominating roll-cell structure of the flow field and
six different flow structures (including no roll cells) are found to be appropriate; see
table 2. After we have done this classification, it is possible to construct a map of
various flow regimes, which is given in table 3. As can be seen, 17 different flow
regimes have been classified during the search of the parameter space of the present
experiments.

Figures 2–5 show where, in the parameter space spanned by Re and Ω , the
various flow states exist. Figure 2 gives an overview for both positive and negative Ω
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COU = Laminar Couette flow
QTR = Quasi turbulence
CNT = Contained turbulence in roll cell
INT = Intermittent turbulence
SPT = Turbulent spots
TRS = Turbulent stripe
TUR = Turbulent flow

Table 1. Classification based on flow state.

N = No roll cells
2D = Two-dimensional roll cell

2Dh = Two-dimensional roll cell for high Ω
2Dm = Two-dimensional meandering roll cell

3D = Three-dimensional roll cell
3Ds = Three-dimensional spatio-temporally roll cell

Table 2. Classification based on flow structures.
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Figure 2. Flow regimes diagram as a function of Reynolds number Re and rotation number
Ω in a plane Couette flow subject to system rotation. Solid lines indicate the transition
boundaries that separate flow states, such as ‘laminar flow’, ‘turbulent flow’, ‘quasi turbulence’,
‘intermittent turbulence’ and ‘contained turbulence in roll cells’. Dashed lines indicate
demarcation between ‘two-dimensional’ and ‘three-dimensional roll cells’: 2Dm, meandering
two-dimensional roll cell; 2Dh, straight two-dimensional roll cell observed for high rotation
rates; 3Ds, spatio-temporally intermittent three-dimensional roll cell. More details are shown
in figure 3 for low Reynolds number, and shown in figures 4 and 5 for positive-rotating and
negative-rotating systems for high Reynolds numbers, respectively.

spanning the range ±30 and for Re up to 1000. The solid lines show the demarcation
between the different flow states given in table 1, whereas the dashed lines show the
demarcation between different flow structures (see table 2) within a given flow state.
As can be seen, it is a fairly complicated diagram, and the demarcations between
different regions are in some cases not clear-cut.



Plane Couette flow with system rotation 15

N 2D 3D 3Ds 2Dm 2Dh

COU COU COU2D COU3D COU3Ds COU2Dm COU2Dh
QTR − − QTR3D QTR3Ds − −
TUR TUR TUR2D TUR3D TUR3Ds − −
CNT − − CNT3D − CNT2Dm −
INT INT − − − − −
SPT SPT − − − − −
TRS TRS − − − − −

Table 3. The principal regimes observed in a plane Couette flow with system rotation.

Figure 3 shows an enlargement of the region 0 � Re � 400 and 0 � Ω � 30, where
a large number of both flow states and flow structures can be found. In this figure
as well as in figures 4 and 5, each symbol represents an experimental observation,
and the heading of the figure shows which procedure has been used (i.e. Case-Ω or
Case-Re). In all cases, we have found that the flow state observed at a given point in
the Re–Ω plane does not depend on how that point is approached. In figure 4, the
region 200 � Re � 1050 and 0 � Ω � 30 is instead shown, whereas figure 5 shows a
similar diagram for stabilizing rotation. In § 5, we will describe the flow structures in
the various regions in detail based on flow visualization.

5. Flow regimes determined from experiments
In the following, we will take the reader through the varying landscape of RPCF

and describe the various regimes. We will use table 3 to keep track of the different
regimes and will follow it row by row. Each section in the following corresponds to
one or a group of neighbouring flow states, and the corresponding flow structures are
described in some detail. In all cases, one or several photographs are used to illustrate
the flow state. We will also point out common features with flow regimes observed in
TCF where appropriate.

5.1. Laminar Couette flow (COU)

5.1.1. Laminar Couette flow: no roll cells

The laminar Couette flow regime with no imbedded roll cells or other structures
occupies a fairly large part of figure 2. For no rotation the results obtained in this
study confirm the results from Tillmark & Alfredsson (1992) that below Re =360, the
flow is laminar and all turbulent disturbances will decay, while other observations in
slightly different experimental configurations and numerical simulations have revealed
lower or higher values of the critical Reynolds number in the range of 320–370
(Lundbladh & Johansson 1991; Daviaud et al. 1992; Dauchot & Daviaud 1995). This
is obtained using the protocol Case-Ω where the Reynolds number is sequentially
decreased, Ω being maintained at zero. For stabilizing rotation Ω < 0, the laminar
region is extended to higher Reynolds numbers. For instance, for Ω = −25 laminar
flow is obtained up to Re ≈ 600. The good agreement with Tillmark & Alfredsson
(1996) is even more satisfactory when one takes into account the fact that their
channel width was 20 mm, whereas in this study it is 10 mm.

For positive Ω, the simple PCF is found to exist below the curve given by (2.8)
in accordance with the results of linear stability theory and the previous results of
Tillmark & Alfredsson (1996).
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Figure 3. Flow regimes diagram for low Reynolds numbers in the case of positive rotating.
A triangle, cf. �, indicates Case-Ω , a circle indicates Case-Re, and an inverted triangle
indicates the experimental result obtained by Hiwatashi et al. (2007). Color of the symbol
displays an individual flow state and structure. The symbols (×) and (+) indicate demarcation
between laminar and turbulent flows by previous experiments (Tillmark & Alfredsson 1996;
Alfredsson & Tillmark 2005).

When entering the laminar region from a fully turbulent one, for instance by
starting at a high Reynolds number and then decreasing it, the situation in figure 6
usually occurs. In the figure, a rotation number of Ω = −14.9 is shown to dramatically
affect the flow, which should be fully turbulent under a non-rotating condition, and in
figure 6(b) no turbulent motions are visible. The turbulence dies away and usually a
turbulent region forming a turbulent spot remains and may move slowly around until
it finally decays and the flow becomes fully laminar. The turbulent spot is clearly
observed in the photograph and even more clearly by direct observation with the
naked eye. If one is close to the stability border, the relaminarization process may
take a significant time (i.e. between several and up to 30 min).

5.1.2. Two-dimensional roll cell in laminar flow

According to linear stability theory, two-dimensional roll cells will form above the
boundary given by (2.8). A typical photograph of such structures is shown in figure 7.
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Figure 4. Same as figure 3 but for high Reynolds numbers in the case of positive rotating.

Here Re = 50.6 and Ω = 2.58. At this Ω, the critical Re is 44, so we are only slightly
above the stability line.

The structures are, as can be seen, quite two-dimensional and steady, although a
slight drift of the structures towards the free surface was observed. The wavelength
is larger in the lower part of the channel and probably due to Ekman layers forming
at the solid boundary there.

When visualizing structures with reflective flakes, the resulting image depends on
both the location of the light source with respect to the flow structures and the
location of the observer. A tentative example of the visualization of non-symmetric
spanwise-oriented roll cells is seen in figure 7(b), where we have assumed that the
platelets on average orient themselves with the streamlines.

To obtain the average spanwise wavelength of the pattern, we use a correlation
technique that correlates the brightness in the photograph. We make this correlation
only in the upper part of the channel to avoid the influence from the lower wall. As
can be seen from figure 8, this technique gives a strong spanwise correlation from
which the spanwise wavelength can be estimated to be 4.0h. This compares well with
the spanwise scale of a roll-cell pair calculated from linear stability theory and with
the picture in figure 7(b).

5.1.3. Three-dimensional roll cell in laminar flow

We have also observed steady three-dimensional disturbances in a rather small
region of the Re–Ω parameter space. Two such cases are displayed in figure 9. The
photographs show a quite surprisingly regular pattern over the full view, although
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Figure 5. Same as figure 3 but for high Reynolds numbers in the case of negative rotating.

(a)

0 60h 0 60h

(b)

Figure 6. Front view photograph of the flow: laminar flow (COU) at Re = 531, Ω = −14.9.
A turbulent spot in (a) decays, and the flow becomes laminar 200 s after, as shown in (b).

there is also a slightly larger wavelength close to the bottom of the channel. The
case shown in figure 9(a) is close in parameter space to one stable case reported by
Hiwatashi et al. (2007), which was also predicted theoretically by Nagata (1998).

5.1.4. Unstable three-dimensional roll cells (COU3Ds) and quasi-turbulence (QTR)

In between the regions of two-dimensional and three-dimensional roll cells, there
exist regions that are spatially and temporally intermittent, meaning that two- and
three-dimensional roll cells develop, interact, break down and disappear intermittently.

In figure 10, we show a sequence of four photographs showing how the flow
field, which basically consists of two-dimensional roll cells, at some random regions
suddenly develop a number of three-dimensional cells that exist for some time
before disappearing. In figure 10, two such regions develop: in figure 10(b) one
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Figure 7. (a) Stable two-dimensional roll cells in laminar flow (COU2D); Re = 50.6,
Ω = 2.58. (b) Relation between roll cells and brightness reflected by flakes.
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Figure 8. Two-point correlation coefficient of light intensity, for the laminar flow with stable
two-dimensional roll cells (corresponding to the cases shown in figure 7), as a function of the
spanwise distance Δz.

is fairly well developed on the left-hand side of the photograph, whereas one is
starting in the right-hand side. Figure 10(c) shows how the one on the left-hand side
dies away, whereas the other has grown in amplitude. Finally, in figure 10(d ) the
flow again consists of two-dimensional roll cells. The wavy structure of the three-
dimensional cells is not stable but decays in amplitude and a pattern of nearly straight
cells is again formed. In other words, two-dimensional roll cells intermittently and
locally change into three-dimensional roll cells without turbulent-like motion as
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Figure 9. Stable three-dimensional roll cells in laminar flow (COU3D); (a) Re = 99.6,
Ω =8.65; (b) Re = 200, Ω = 17.4. The rectangle show a blow-up of the centre part of the
pictures with a factor of 2.

(a) (b)

(c) (d)

60h0 60h0

60h060h0

Figure 10. Spatio-temporally intermittent three-dimensional roll cells in a laminar flow with
two-dimensional roll cell (COU3Ds). At ΔT = 0 s, 12 s, 24 s and 50 s from (a) to (d ). Re =151,
Ω =1.32.
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two-dimensional→three-dimensional→two-dimensional→ · · ·. Therefore, in this
paper, such case is termed COU3Ds. Nagata & Kawahara (2004) investigated
the instability of the periodic (quaternary) solutions bifurcating from the three-
dimensional (tertiary) solution and reported that the oscillatory instabilities gave
rise to three-dimensional time-periodic motions, i.e. temporally intermittent three-
dimensional roll cells, within a certain range of Ω . It was confirmed by their
simulation that the periodic solutions at Re = 100 had been observed for Ω = 2.1–8.0.
Our observation with respect to COU3Ds is in agreement with this. In a higher Re
region than COU3Ds, disordered turbulent-like motion occurs for a short period
after the decay of three-dimensional roll cells. In figure 11, we have two other cases
of intermittent development. Figure 11(a) shows a sequence of seven photographs
following the development of a flow consisting mainly of three-dimensional roll cells;
however, in this case the roll cells are unstable, break down and two two-dimensional
cells appear in small regions, which after a while start to become three-dimensional
again. This is a repeating, but random, process occurring across the full flow field.

Figure 11(b), on the other hand, is for a higher Reynolds number where both
two-dimensional and three-dimensional cells appear in the flow field, but when the
three-dimensional cells break down, the flow field seems to first become turbulent like.
After a while, the turbulence decays and new two-dimensional and three-dimensional
cells appears again. This is also a repeated process.

Finally, we show photographs (figure 12) where the basic flow field consists
of unstable three-dimensional roll cells, which means that they break down to
unorganized laminar-like motion (figure 12a) or a turbulence-like state, which we
denote by quasi-turbulence (figure 12b). In this case, we are closer in parameter space
to the region of the stable three-dimensional roll cells.

5.1.5. Meandering laminar roll cells

We have also found a region which we call stable meandering two-dimensional roll
cells. This region borders to the three-dimensional roll-cell region, but it seems that
the roll cells have a quite different internal structure in the three-dimensional case
(figure 13). In the two-dimensional meandering case, the internal structure seems
to change as compared to the straight two-dimensional cells, whereas the three-
dimensional cells seem to have a complicated inner structure.

5.1.6. Laminar two-dimensional roll cells at high rotation rates

At high Ω and Re quite far away from the linear stability boundary, it is possible to
again obtain two-dimensional roll cells. Figure 14 shows an example of such structures.
The boundaries between the light and dark regions in the flow field are sharper than
those for low Ω, and the dark regions seem to have some internal structure as well.
This photograph is taken at the border of two-dimensional meandering roll cells,
and as seen in figure 15 the flow field for these parameters changes slowly from
meandering two-dimensional cells to straight ones. In the blow-up of the photographs
in figure 15, the interior structure of the roll cells can be viewed in some more detail.
If Ω is increased to become larger than Re, the two-dimensional roll cells must be
suppressed because it approaches the stability boundary given by (2.8).

5.2. Turbulent Couette flow

In this section, we describe various regions in parameter space where the flow is
fully turbulent but where rotation may give rise to roll-cell structures that seem to
be overlaid on the turbulence. We chose mainly a Reynolds number of Re = 751 and
then change Ω (i.e. Case-Re) to illustrate the different flow regimes.
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Figure 11. Spatio-temporally intermittent three-dimensional roll cells and their breakdown
to turbulence (QTR3Ds). (a) Re = 148, Ω = 2.58; (b) Re = 300, Ω = 1.04. The time interval
between photographs is 4 s (a) or 5 s (b).

5.2.1. Turbulent Couette flow: featureless

First, we describe briefly the fully turbulent case at high Reynolds numbers with weak
positive rotation or moderate negative rotation. In figure 16(a), a short time (1/100 s)
exposure is shown giving an instantaneous picture of the flow field exhibiting many
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Figure 12. Unstable three-dimensional roll cells (QTR3D). (a) Re =151, Ω =8.36; (b)
Re = 250, Ω = 10.6. The time interval between photographs is about 200 s (a) or 8 s (b).

0 30h 60h

Figure 13. Stable meandering two-dimensional roll cells in laminar flow (COU2Dm);
Re =147, Ω = 20.1.

small-scale turbulent structures. For Re =751 and Ω = 1.08, the turbulence turnover
time scale is τo = 0.029 s. This exposure time is, therefore, a reasonable compromise
for a good still photograph.

In figure 16(b), we instead show a rather long-time exposure of the same flow field,
which then averages out the small-scale structures and show elongated streamwise
structures. Similar structures are also found in the case of Ω = 0 and are neither
induced nor affected by the rotation in this case. For the non-rotating turbulent
case, it is well known that the central part contains large-scale streamwise velocity
fluctuation extending over a very long streamwise distance, which is caused by
large longitudinal vortical structures, as indicated by Lee & Kim (1991). There
exists a mechanism, not clarified yet, in Couette flow that can sustain large-scale
streamwise vortex structures (Kitoh, Nakabayashi & Nishimura 2005). Direct
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0 30h 60h

Figure 14. Stable two-dimensional roll cells in laminar flow (COU2Dh) at high Rotation
number; Re =178, Ω = 24.6.

(a) (b) (c)

0 10h 0 10h 0 10h

Figure 15. Sequential changes of structures from meandering two-dimensional roll cells to
straight roll cells of the flow field at every 180 s (a–c). Re = 178, Ω = 24.6.

numerical simulations with a sufficiently long computational domain were performed
by Komminaho et al. (1996) and Tsukahara, Kawamura & Shingai (2006), and they
revealed that the vortical structures are of finite size and stationary neither in time
nor in space but fluctuating around their average position. According to their result,
the streamwise length and the spanwise separation of the vortical structure are about
5–6h and 2h for Re = 750, respectively. The finite elongated structures we observed in
figure 16(b) are comparable in size to the vortical structure and specifically different
from a roll cell caused by the Coriolis force. This flow, labelled TUR, lacks any
apparent roll cell except the vortical structures and is thus termed as ‘featureless
turbulence’.

Figure 16(c) is also a long-time exposure for a case Re = 948 with large negative
rotation, Ω = −14.9. The short-time exposure is similar to that in figure 16(a);
however, as can be seen, the elongated structures have more or less disappeared in
figure 16(c). Tsukahara et al. (2006) showed that the large-scale vortical structure
became more prominent and elongated as Re increased from 750 to 2150. However,
the flow under the negative rotation indicates no large-scale structure as well as roll
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Figure 16. Featureless turbulent flow (TUR); (a,b) Re = 751, Ω = 1.08; (c) Re = 948,
Ω = −14.9. The exposure time is 1/100 s in (a), 2.0 s in (b,c).

cells. The dominant visible length scale was smaller than the channel width. This is
probably an effect of the stabilizing rotation.

5.2.2. Turbulent Couette flow: with stable two-dimensional roll cells

Increasing the rotation rate (still with Re =751), we go into a region where roll
cells are formed and seem to overlay the turbulence without any direct interaction
(figure 17). Figure 17(a) (short-time exposure) shows rather homogeneous fine-scale
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Figure 17. Stable two-dimensional roll cells in turbulent flow (TUR2D); Re = 751, Ω = 5.03.
The exposure time is 1/80 s in (a) and 2.0 s in (b).
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Figure 18. Spatio-temporally intermittent three-dimensional roll cells in a turbulent flow
(TUR3Ds) at Re = 751; (a,b) Ω = 8.78, (c) Ω = 14.4, (d ) Ω =16.2. The exposure time is 1/80
s in (a) and 2.0 s in (b–d ).

turbulent structures, while the time-averaged (a long exposure time) flow field reveals
the coexistence of two-dimensional roll cells (figure 17b) of a much larger scale.
When compared to the time-averaged field for zero or weak rotation shown in
figure 16(b), the dominant structures show a regular pattern in the spanwise direction
and are elongated in the streamwise direction. These features are common to the
two-dimensional roll cells in the laminar background (cf. figure 7).

5.2.3. Turbulent Couette flow: with spatio-temporal developing three-dimensional roll
cells

In figure 18, we see an example where the flow field is turbulent on top of the roll
cells. However, with the long time averaging, it is clear that the roll cells are not stable
but that there exist regions where the roll cells have disappeared and other regions
where they still are strong. These regions are not stationary, and we denote the flow
as spatio-temporally developing.

5.2.4. Turbulent Couette flow: with stable three-dimensional roll cells

The stationary laminar three-dimensional roll cells have their counterpart also for
high Reynolds numbers where the flow is turbulent. Figure 19 shows both a short
and long time exposure of the flow field. The long-time exposure is quite similar to
the laminar case in its structure; however, there is a distinct difference in both the
spanwise and streamwise scales.
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(a) (b)

0 60h 0 60h

Figure 19. Stable three-dimensional roll cells in a turbulent flow (TUR3D); Re = 751,
Ω = 21.8. The exposure time is 1/80 s in (a) and 2.0 s in (b).
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Figure 20. Two-point correlation coefficient of light intensity, for the flows with stable
three-dimensional roll cells, as a function of streamwise distance Δx or spanwise distance
Δz. The cases of COU3D correspond to those shown in figure 9, whereas the case of TUR3D
is at slightly lower Reynolds number than that for the photograph given in figure 19(b).

Figure 20 shows both the streamwise and spanwise correlations of the three-
dimensional stable structures in the laminar and turbulent cases. In the turbulent
case, the correlation is obtained from a long-time exposure of the flow such as in
figure 19(b). The laminar ones (at two different combinations of Re and Ω) give
a streamwise length scale of about 16h, whereas in the turbulent case the scale is
about 26h. For the spanwise correlation, on the other hand, the turbulent case gives
the shortest spanwise length scale of about 4.5h, whereas in the laminar cases the
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Figure 21. Contained turbulence in three-dimensional roll cells (CNT3D); the exposure time
is 1/30 s in (a), 1/100 s in (c), 2.0 s in (b,d ). (a,b) Re =300, Ω = 21.1; (c, d ) Re = 500, Ω = 25.8.
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Figure 22. Contained turbulence in two-dimensional meandering roll cells (CNT2Dm); the
exposure time is 1/30 s in (a,c), 2.0 s in (b,d ). (a,b) Re = 350, Ω = 25.5; (c,d ) Re = 350, Ω = 29.0.

major correlation peak is at 6h. In comparison to the correlation function for the
purely two-dimensional laminar case (figure 8), these correlation functions gave some
local peaks, which signifies that the flow structures have a more complicated structure
here.

5.3. Contained turbulence in roll cells

In another region of parameter space at high Re and Ω , we find that the turbulence
seems to be contained in the roll cells and not connected to turbulence in neighbouring
cells. This observation has been done both for three-dimensional roll cells (figure 21)
and for two-dimensional meandering cells (figure 22). Considering the scenario of roll
cells modifications in the laminar background described in § 5.1, it is conjectured that
the two-dimensional meandering cells that are embedded in turbulence should change
to straight cells, labelled 2Dh, at high rotation numbers.
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If the rotation number is increased further, the turbulent motion and the roll cells
are expected to be quenched for Ω > Re, as demonstrated by Alfredsson & Tillmark
(2005).

5.4. Intermittent turbulence, turbulent stripes or turbulent spots

For stabilizing rotation, there is a wedge-shaped region in the flow regime diagram
(figure 2) where the flow is found to have coexisting laminar and turbulent regions. To
describe the development in this region, let us decrease the Reynolds number at a fixed
(negative) Ω . For high enough Reynolds number the flow is fully turbulent (which
we call featureless turbulence). Decreasing Re, we enter a region that we denote the
intermittent turbulence region (INT), that is a sub-region of the above-mentioned
wedge-shaped region. Most part of the flow field shows featureless turbulence,
although in some randomly spaced and shaped regions, a localized laminar region
appears for a short time. A typical such flow case is seen in figure 23(a). By further
decreasing Re, we enter a region (TRS) where stripes are observed which stretch across
the channel and consist of a periodic alternation of turbulent and laminar bands. The
inclination of the stripes seems to decrease with decreasing Reynolds number. Such a
flow situation is seen in figure 23(b). However, the orientation of the inclination is not
given by the apparatus but changes from case to case. The pattern itself is essentially
stationary in space and persists for many hours, it presumably has an indefinite
lifetime. Decreasing Re even further there is another, relatively narrow, sub-region
(SPT) neighbouring the laminar Couette flow region where isolated turbulent spots
move around randomly, they are born and they die (see figure 23c). Note that with
increasing negative rotation, the Reynolds number for which the flow is fully laminar
increases showing the stabilizing effect of rotation.

Similarly, earlier PCF experiments produced localized turbulent patches as the
result of a distinct transition to a fairly regular pattern with finite wavelengths of
the order of 40–60h (cf. Prigent et al. 2002; Prigent & Dauchot 2005). Here, the
wavevector is in a direction perpendicular to the relevant observed turbulence bands.
The wavelength of the pattern in figure 23(b) is approximately 60h, and the wavevector
is inclined at an angle of about 37◦ against the streamwise direction. Although only
a few turbulent stripes are observed simultaneously because of the rather low aspect
ratio of the present channel, the wavelength and the inclination angle roughly agree
with those obtained by Prigent et al. (2002), and it is hypothesized that the turbulent
stripes in the RPCF (as well as PCF) and the spiral turbulence in TCF are similar.

Figure 24 shows how this pattern changes when the Reynolds number decreases
for a given Ω . For the lowest Reynolds number, the flow is close to the SPT region.
However, the range of Reynolds numbers where one can observe isolated turbulent
spots is quite narrow even if the stabilizing rotation rate |Ω | is high. On the other
hand, as Re increases the width of the turbulent band increases until no well-defined
large-scale pattern can be observed in the INT region.

6. Summary and conclusions
We have reported the first extensive mapping of the Re–Ω plane in a rotating
plane Couette flow. Our measurements are taken in the ranges 0 <Re < 1050 and
−27 < Ω < 30, thereby coveringlaminar, transitional and turbulent flow regimes.
During this mapping, we have identified 17 different flow states, both laminar and
turbulent, with and without roll cells, as well as states that can be described as
transitional, i.e. states that contain both laminar and turbulent regions at the same
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Figure 23. Intermittent turbulence: (a) localized laminar region occurs in turbulent flow
(INT) at Re = 751, Ω = −14.4; (b) turbulent stripes (TRS) for Re = 751, Ω = −25.8;
(c) turbulent spots in a laminar flow (SPT) at Re = 600, Ω = −24.4.

time. The Re–Ω plane has been covered by keeping Ω constant varying Re and vice
versa.

The mapping has been documented not only through flow visualization using
reflective flakes and still photography but also through direct observation by the
naked eye. In order to enhance the contrast of the photographs, they have been
digitally enhanced to take into account the varying brightness of the pictures. For
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Figure 24. Sequence change of turbulent stripes as Re was decreased for fixed Ω = −14.9:
Re is 720, 654, 591 and 563 in (a–d ).

some flow fields, photographs have been taken with both short- and long-time
exposures, the short-time exposure gives an instantaneous picture of the turbulent
flow field, whereas the long-time exposure averages the small, rapidly varying scales
and only shows the large scales.

In some cases the photographs have been used to obtain the scales of the structures
by applying correlation techniques to the light intensity of the photographs. In this
way, it was easy to obtain, in an objective manner, both the spanwise and streamwise
wavelengths of the flow structures.

The conclusions from our study can be summarized as follows:
(i) The Re–Ω plane of rotating plane Couette flow shows a very rich atlas of

various flow states, comparable with that found for Taylor–Couette flow. Some of the
flow states seem to have similar characteristics whereas others seem to be unique for
the present case.

(ii) The RPCF does not seem to be susceptible to hysteresis effects, i.e. it is not
sensitive to from which direction a certain point in the Re–Ω plane is reached.

(iii) The transitional Reynolds number obtained without rotation is consistent with
the values obtained earlier in the present apparatus. This value is about 10 % higher
than the value obtained by other groups and the reason for this is still not clear.

(iv) For stabilizing rotation, not only the transitional Reynolds number increases
as expected but also the range of Reynolds numbers where a striped pattern of
inter-weaved laminar–turbulent regions is observed becomes wider, and the width
increases with increasing stabilizing Ω . In the present flow, only a few (2–3) turbulent
stripes could be observed simultaneously because of the rather low aspect ratio of
the present channel. The range of Reynolds numbers where one can observe isolated
turbulent spots is however quite narrow, independent of the stabilizing rotation rate.

(v) For destabilizing rotation, a number of interesting phenomena are observed.
The laminar regime regions, where stable three-dimensional roll cells are observed,
seem to be consistent with the results of Nagata (1998) and Hiwatashi et al.
(2007). For other parameter values, the three-dimensional roll cells are spatially and
temporally intermittent, i.e. they are suddenly observed on top of two-dimensional
cells as predicted by Nagata & Kawahara (2004), whereafter they decay. In other
ranges, three-dimensional cells break down to turbulence and then they are again
re-established in a repeating pattern.
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(vi) At high Re and/or high Ω, roll cells are observed to become turbulent,
although in the photographs the underlying roll-cell structure is still observed. Both
two-dimensional and three-dimensional turbulent roll cells have been observed. By
taking long-time exposures of the flow, it has been shown that the roll-cell structures
are sustained more or less as in the laminar case, although both the spanwise and the
streamwise (in the three-dimensional case) wavelengths increase.

The observations put forward in this paper give many opportunities to study the
effect of rotation on the stability, transition and turbulence in shear flows. With
the mapping carried out, it is easy to find the parameter range where a specific
flow state occurs. This will be especially valuable for those studying such flows and
phenomena in detail using direct numerical simulations because the mapping gives a
good indication where different states can be found.
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